


2018-01-23
NOSLEN SUAREZ
NOSLEN SUAREZ

2018-02-22
VALERIA RODRÍGUEZ-FAJARDO
VALERIA RODRÍGUEZ-FAJARDO

2018-02-26
BENJAMIN WOLTER
BENJAMIN WOLTER

2018-03-19
JOANNA ZIELINSKA
JOANNA ZIELINSKA

2018-03-23
QUAN LIU
QUAN LIU

2018-03-28
LARA LAPARRA
LARA LAPARRA

2018-04-03
GUILLAUME CORDIER
GUILLAUME CORDIER

2018-05-22
KEVIN SCHÄDLER
KEVIN SCHÄDLER

2018-06-14
MIRIAM MARCHENA
MIRIAM MARCHENA

2018-06-19
CARLOS ABELLAN
CARLOS ABELLAN

2018-07-02
LUKAS NEUMEIER
LUKAS NEUMEIER

2018-07-24
SHAHRZAD PARSA
SHAHRZAD PARSA

2018-07-25
PAU FARRERA
PAU FARRERA

2018-07-31
BARBARA BUADES
BARBARA BUADES

2018-09-06
SIMON COOP
SIMON COOP

2018-09-13
NICOLAS MARING
NICOLAS MARING

2018-09-19
IVAN SUPIC
IVAN SUPIC

2018-10-02
ANIELLO LAMPO
ANIELLO LAMPO

2018-10-10
CÉSAR CABRERA
CÉSAR CABRERA

2018-10-11
FLORIAN CURCHOD
FLORIAN CURCHOD

2018-10-18
JOSEP CANALS
JOSEP CANALS

2018-10-19
ROLAND TERBORG
ROLAND TERBORG

2018-10-22
KAVITHA KALAVOOR
KAVITHA KALAVOOR

2018-10-24
MIGUEL MIRELES
MIGUEL MIRELES

2018-10-26
KYRA BORGMAN
KYRA BORGMAN

2018-10-30
JOSE M. GARCIA-GUIRADO
JOSE M. GARCIA-GUIRADO

2018-11-12
JIL SCHWENDER
JIL SCHWENDER

2018-12-10
JOSÉ RAMÓN MARTÍNEZ
JOSÉ RAMÓN MARTÍNEZ

2018-12-12
LIJUN MENG
LIJUN MENG

2018-12-17
NICOLÁS MORELL
NICOLÁS MORELL

2018-12-18
JUNXIONG WEI
JUNXIONG WEI
Double Resonant Character in an Optical Cavity for High Performance and Stable Polymer Solar Cells


QUAN LIU
March 23rd, 2018
QUAN LIU
Organic Nanostructured Photovoltaics
ICFO-The Institute of Photonic Sciences
Solution-processed thin film solar cells emerged as very promising photovoltaic technologies suitable for a low cost roll-to-roll upscale production. Such thin film character also ensures lightweight and flexibility for the solar cell modules, making them ideal for a wide variety of applications where silicon panels cannot be used. In addition to the above-mentioned advantages, common in all solution-processed thin film technologies, polymer solar cells (PSCs) have a unique semitransparency, which makes them very useful for solar window applications and very competitive in building integrated photovoltaics.
In recent years, a remarkable progress has been achieved in the field of PSCs. The power conversion efficiency of PSCs has already surpassed the 11% barrier. However, to be able to eventually compete with other solution-processed thin film technologies, such device efficiency must be further improved. Given the low charge carrier mobility in commonly used organic p-conjugated semiconductors, the tradeoff between optical absorption and charge collection, limits the thickness of the majority of photoactive layers currently being used to approximately 100 nm. To overcome the limited light absorption in such thin active layers, an adequate optical management becomes very important. Ideally, a light absorption or short-circuit current enhancement should be achieved without affecting the other photovoltaic parameters, such as the photovoltaic device open circuit voltage and fill factor.
Friday March 23, 11:00. ICFO Auditorium
Thesis Advisor: Prof Dr Jordi Martorell, ICFO
Thesis Co-advisor: Prof Dr Uli Lemmer, KIT
ICFO-The Institute of Photonic Sciences
Solution-processed thin film solar cells emerged as very promising photovoltaic technologies suitable for a low cost roll-to-roll upscale production. Such thin film character also ensures lightweight and flexibility for the solar cell modules, making them ideal for a wide variety of applications where silicon panels cannot be used. In addition to the above-mentioned advantages, common in all solution-processed thin film technologies, polymer solar cells (PSCs) have a unique semitransparency, which makes them very useful for solar window applications and very competitive in building integrated photovoltaics.
In recent years, a remarkable progress has been achieved in the field of PSCs. The power conversion efficiency of PSCs has already surpassed the 11% barrier. However, to be able to eventually compete with other solution-processed thin film technologies, such device efficiency must be further improved. Given the low charge carrier mobility in commonly used organic p-conjugated semiconductors, the tradeoff between optical absorption and charge collection, limits the thickness of the majority of photoactive layers currently being used to approximately 100 nm. To overcome the limited light absorption in such thin active layers, an adequate optical management becomes very important. Ideally, a light absorption or short-circuit current enhancement should be achieved without affecting the other photovoltaic parameters, such as the photovoltaic device open circuit voltage and fill factor.
Friday March 23, 11:00. ICFO Auditorium
Thesis Advisor: Prof Dr Jordi Martorell, ICFO
Thesis Co-advisor: Prof Dr Uli Lemmer, KIT