


2018-01-23
NOSLEN SUAREZ
NOSLEN SUAREZ

2018-02-22
VALERIA RODRÍGUEZ-FAJARDO
VALERIA RODRÍGUEZ-FAJARDO

2018-02-26
BENJAMIN WOLTER
BENJAMIN WOLTER

2018-03-19
JOANNA ZIELINSKA
JOANNA ZIELINSKA

2018-03-23
QUAN LIU
QUAN LIU

2018-03-28
LARA LAPARRA
LARA LAPARRA

2018-04-03
GUILLAUME CORDIER
GUILLAUME CORDIER

2018-05-22
KEVIN SCHÄDLER
KEVIN SCHÄDLER

2018-06-14
MIRIAM MARCHENA
MIRIAM MARCHENA

2018-06-19
CARLOS ABELLAN
CARLOS ABELLAN

2018-07-02
LUKAS NEUMEIER
LUKAS NEUMEIER

2018-07-24
SHAHRZAD PARSA
SHAHRZAD PARSA

2018-07-25
PAU FARRERA
PAU FARRERA

2018-07-31
BARBARA BUADES
BARBARA BUADES

2018-09-06
SIMON COOP
SIMON COOP

2018-09-13
NICOLAS MARING
NICOLAS MARING

2018-09-19
IVAN SUPIC
IVAN SUPIC

2018-10-02
ANIELLO LAMPO
ANIELLO LAMPO

2018-10-10
CÉSAR CABRERA
CÉSAR CABRERA

2018-10-11
FLORIAN CURCHOD
FLORIAN CURCHOD

2018-10-18
JOSEP CANALS
JOSEP CANALS

2018-10-19
ROLAND TERBORG
ROLAND TERBORG

2018-10-22
KAVITHA KALAVOOR
KAVITHA KALAVOOR

2018-10-24
MIGUEL MIRELES
MIGUEL MIRELES

2018-10-26
KYRA BORGMAN
KYRA BORGMAN

2018-10-30
JOSE M. GARCIA-GUIRADO
JOSE M. GARCIA-GUIRADO

2018-11-12
JIL SCHWENDER
JIL SCHWENDER

2018-12-10
JOSÉ RAMÓN MARTÍNEZ
JOSÉ RAMÓN MARTÍNEZ

2018-12-12
LIJUN MENG
LIJUN MENG

2018-12-17
NICOLÁS MORELL
NICOLÁS MORELL

2018-12-18
JUNXIONG WEI
JUNXIONG WEI
Nonlocal Resources for Quantum Information Tasks

Florian Curchod

October 11th, 2018
FLORIAN CURCHOD
Quantum Information Theory
ICFO-The Institute of Photonic Sciences
This thesis focusses on the essential features of Quantum Theory that are systems in an entangled state and Bell nonlocal correlations. Here, we take the angle of a resource theory and are interested in understanding better how entanglement and nonlocality, first, relate to one another. Indeed, if entangled systems are necessary for the generation of nonlocal correlations, there nevertheless exist entangled systems that seem unable to do so. Quantitatively, it is also unclear whether "more" entanglement leads to "more" nonlocality and, related to that, which measures should be used as quantifiers. Second, entangled systems and nonlocal correlations have been identified as resources for information tasks with no classical equivalent such as the generation of true random numbers. It is then important to understand how the two quantum resources relate to other quantities generated in information tasks. First, we show that entangled quantum systems are unbounded resources for the generation of certified random numbers by making sequences of measurements on them. This certification is achieved through the successive near maximal violation of a particular Bell inequality for each measurement in the sequence. Moreover, even the simplest two-qubit systems in an almost separable (pure) state achieve this unbounded randomness certification. Second, we show that entanglement and nonlocality are seemingly put in a quantitative equivalence when using the nonlocal volume as measure. This measure is defined as the probability that a system in a given state generates nonlocal correlations when random measurements are performed on it. We prove that this measure satisfies natural properties for an operational measure of nonlocality. Then we show that, in all situations that we could explore, the most nonlocal state -- as measured by the nonlocal volume -- is always the maximally entangled state. Third, we consider multipartite scenarios in which quantum systems are distributed to numerous parties. Note that it is in general harder to generate a system that is entangled between many parties rather than more systems entangled between fewer parties. In that spirit, we develop a framework and tools for the study of correlation depth, i.e. the minimal size of the resource -- such as entangled systems -- that is needed for the (re)production of the correlations. Fourth, we study the equivalence between the multipartite notions of entanglement and of nonlocality. From an operational understanding of multipartite entanglement, we develop simple families of Bell inequalities that are very efficient for the detection of multipartite nonlocality of pure states. Last, we study the utility of multipartite quantum correlations for the design of information protocols. We also identify novel features characteristic of these correlations.
The results of this thesis shed light on the interrelations in the triangle entanglementnonlocality- randomness in Quantum Theory. By going beyond the standard approaches -- by considering sequences of measurements on the systems or by considering a novel measure of nonlocality -- we obtain insight on the quantitative relations between these three essential quantities. Our study of the multipartite scenario also helps in characterising and identifying multipartite correlations in a simple way. Finally, we also deepened our understanding of how entangled systems and nonlocal correlations, in particular multipartite ones, serve as resources for the design of information tasks with no classical equivalent.
Thursday, October 11, 11:00. ICFO Auditorium
Thesis Advisor: Prof Dr Antonio Acín
ICFO-The Institute of Photonic Sciences
This thesis focusses on the essential features of Quantum Theory that are systems in an entangled state and Bell nonlocal correlations. Here, we take the angle of a resource theory and are interested in understanding better how entanglement and nonlocality, first, relate to one another. Indeed, if entangled systems are necessary for the generation of nonlocal correlations, there nevertheless exist entangled systems that seem unable to do so. Quantitatively, it is also unclear whether "more" entanglement leads to "more" nonlocality and, related to that, which measures should be used as quantifiers. Second, entangled systems and nonlocal correlations have been identified as resources for information tasks with no classical equivalent such as the generation of true random numbers. It is then important to understand how the two quantum resources relate to other quantities generated in information tasks. First, we show that entangled quantum systems are unbounded resources for the generation of certified random numbers by making sequences of measurements on them. This certification is achieved through the successive near maximal violation of a particular Bell inequality for each measurement in the sequence. Moreover, even the simplest two-qubit systems in an almost separable (pure) state achieve this unbounded randomness certification. Second, we show that entanglement and nonlocality are seemingly put in a quantitative equivalence when using the nonlocal volume as measure. This measure is defined as the probability that a system in a given state generates nonlocal correlations when random measurements are performed on it. We prove that this measure satisfies natural properties for an operational measure of nonlocality. Then we show that, in all situations that we could explore, the most nonlocal state -- as measured by the nonlocal volume -- is always the maximally entangled state. Third, we consider multipartite scenarios in which quantum systems are distributed to numerous parties. Note that it is in general harder to generate a system that is entangled between many parties rather than more systems entangled between fewer parties. In that spirit, we develop a framework and tools for the study of correlation depth, i.e. the minimal size of the resource -- such as entangled systems -- that is needed for the (re)production of the correlations. Fourth, we study the equivalence between the multipartite notions of entanglement and of nonlocality. From an operational understanding of multipartite entanglement, we develop simple families of Bell inequalities that are very efficient for the detection of multipartite nonlocality of pure states. Last, we study the utility of multipartite quantum correlations for the design of information protocols. We also identify novel features characteristic of these correlations.
The results of this thesis shed light on the interrelations in the triangle entanglementnonlocality- randomness in Quantum Theory. By going beyond the standard approaches -- by considering sequences of measurements on the systems or by considering a novel measure of nonlocality -- we obtain insight on the quantitative relations between these three essential quantities. Our study of the multipartite scenario also helps in characterising and identifying multipartite correlations in a simple way. Finally, we also deepened our understanding of how entangled systems and nonlocal correlations, in particular multipartite ones, serve as resources for the design of information tasks with no classical equivalent.
Thursday, October 11, 11:00. ICFO Auditorium
Thesis Advisor: Prof Dr Antonio Acín