Theses
< 2018>
2018-01-23
NOSLEN SUAREZ
2018-02-26
BENJAMIN WOLTER
2018-03-23
QUAN LIU
2018-03-28
LARA LAPARRA
2018-05-22
KEVIN SCHÄDLER
2018-06-14
MIRIAM MARCHENA
2018-06-19
CARLOS ABELLAN
2018-07-02
LUKAS NEUMEIER
2018-07-24
SHAHRZAD PARSA
2018-07-25
PAU FARRERA
2018-07-31
BARBARA BUADES
2018-09-06
SIMON COOP
2018-09-13
NICOLAS MARING
2018-09-19
IVAN SUPIC
2018-10-02
ANIELLO LAMPO
2018-10-10
CÉSAR CABRERA
2018-10-11
FLORIAN CURCHOD
2018-10-18
JOSEP CANALS
2018-10-19
ROLAND TERBORG
2018-10-24
MIGUEL MIRELES
2018-10-26
KYRA BORGMAN
2018-11-12
JIL SCHWENDER
2018-12-12
LIJUN MENG
2018-12-17
NICOLÁS MORELL
2018-12-18
JUNXIONG WEI

Levitodynamics toward Force Nano-Sensors in Vacuum



Francesco Ricci
February 22nd, 2019 FRANCESCO RICCI Plasmon Nano-Optics
ICFO-The Institute of Photonic Sciences


Levitodynamics addresses the levitation and manipulation of micro- and nanoresonators with the purpose of studying their dynamics. This emerging field has attracted much attention over the last few years owing to unprecedented performances in terms of mechanical quality factors, cooling rates at room temperature, and ultra-high force sensitivities. In this thesis, I establish the use of an optically levitated and electrically driven charged silica nanoparticle as a promising and reliable force sensor in vacuum. The first two experiments discussed in this work seek a deeper knowledge and a higher control of the levitated system. Firstly, I suggest and demonstrate a novel protocol to measure the mass of the particle up to 2% accuracy using its electrically driven motion. This method improves by more than one order of magnitude the state-of-the-art mass measurements in standard optical tweezers schemes. Then, leveraging on these results, a second experiment is performed to address important open issues regarding the morphology of the nanoparticles used, with particular interest in their surface chemistry and in the understanding of mass-losses due to water desorption from the silica spheres. Finally, backed up by extensive theoretical background in nonlinear mechanical oscillators, I investigate the stochastic bistable dynamics of a parametrically driven nanoresonator in the nonlinear regime, discussing the potential of noise-activated stochastic switching and stochastic resonance as unconventional force detection schemes.


Friday February 22, 11:00. ICFO Auditorium

Thesis Advisor: Prof Dr Romain Quidant
Thesis Co-advisor: Prof Raúl Rica