Engineering Z_2 Lattice Gauge Theories with a Strongly Interacting Atomic Mixture
May 9th, 2019 LUCA BARBIERO Université Libre de Bruxelles

In this talk I will show how quantized dynamical gauge fields can be created in mixtures of strongly interacting ultracold atoms in optical lattices. Specifically, I will discuss a protocol by which atoms of one species carry a magnetic flux felt by an other species, hence realizing an instance of flux-attachment. This is obtained by combining coherent lattice modulation techniques with strong Hubbard interactions. I will show that this protocol has been experimentally implemented in a double-weel potential thus realizing a first building block of a true Z_2 lattice gauge theory. Moreover I will discuss how this setting can be arranged so as to implement lattice models displaying a Z2 gauge symmetry, both in one and two dimensions. Finally I will also present a detailed analysis of a ladder toy model, which features a global Z_2 symmetry, and reveal the phase transitions that occur both in the matter and gauge sectors. Mastering flux-attachment in optical lattices envisages a new route towards the realization of strongly-correlated systems with properties dictated by an interplay of dynamical matter and gauge fields.

Seminar, May 9, 2019, 15:00. ICFO’s Seminar Room

Hosted by Prof. Maciej Lewenstein