Strange Metals and Black Holes

October 9th, 2019 SUBIR SACHDEV Harvard University

The ‘strange metal’, a state of matter formed by electrons in many modern materials, including the compounds which exhibit high temperature superconductivity. In this state, electrons quantum entangle with each other and conduct electric current collectively (rather than one-by-one, as in an ordinary metal like copper). Quantum entanglement also has remarkable effects near the horizon of a black hole, leading to the Bekenstein-Hawking black hole entropy, and the Hawking temperature. Surprisingly, there is a deep connection between the nature of quantum entanglement in strange metals and black holes, and this has led to mutually beneficial insights. This connection is simply described by the Sachdev-Ye-Kitaev model, which leads to a common set of equations describing the quantum dynamics of certain strange metals and black holes. I will describe recent progress in developing a theory of strange metals building on the solvable SYK model.

This activity is co-funded by the European Regional Development Funds (ERDF) allocated to the Programa operatiu FEDER de Catalunya 2014-2020, with the support of the Secretaria d’Universitats i Recerca of the Departament d’Empresa i Coneixement of the Generalitat de Catalunya for emerging technology clusters devoted to the valorization and transfer of research results (GraphCAT 001-P-001702).

Wednesday, October 9, 2019, 12:00. ICFO’s Seminar Room

Hosted by Prof. Maciej Lewenstein