


2019-01-18
ION HANCU
ION HANCU

2019-01-29
MARIA MAFFEI
MARIA MAFFEI

2019-02-13
BORIS BOURDONCLE
BORIS BOURDONCLE

2019-02-15
JORDI MORALES DALMAU
JORDI MORALES DALMAU

2019-02-22
FRANCESCO RICCI
FRANCESCO RICCI

2019-03-06
CLARA GREGORI
CLARA GREGORI

2019-03-26
ALEXIA SALAVRAKOS
ALEXIA SALAVRAKOS

2019-04-12
SENAIDA HERNANDEZ SANTANA
SENAIDA HERNANDEZ SANTANA

2019-04-15
DAVID RAVENTÓS RIBERA
DAVID RAVENTÓS RIBERA

2019-04-16
PETER SCHMIDT
PETER SCHMIDT

2019-04-29
CALLUM O’DONNELL
CALLUM O’DONNELL

2019-05-02
LUCIANA VIDAS
LUCIANA VIDAS

2019-05-03
HANYU YE
HANYU YE

2019-05-10
TANJA DRAGOJEVIC
TANJA DRAGOJEVIC

2019-05-17
FLAVIO BACCARI
FLAVIO BACCARI

2019-06-04
MARTINA GIOVANNELLA
MARTINA GIOVANNELLA

2019-07-02
OZLEM YAVAS
OZLEM YAVAS

2019-07-03
ALESSANDRO SERI
ALESSANDRO SERI

2019-07-11
RENWEN YU
RENWEN YU

2019-09-06
ALEXANDER BLOCK
ALEXANDER BLOCK

2019-10-04
MARCO PAGLIAZZI
MARCO PAGLIAZZI

2019-10-07
RINU MANIYARA
RINU MANIYARA

2019-10-15
ALEJANDRO POZAS-KERSTJENS
ALEJANDRO POZAS-KERSTJENS
On-Chip Biosensing Platforms based on Gold and Silicon Optical Nano-Resonators


Ozlem Yavas
July 2nd, 2019
OZLEM YAVAS
Plasmon Nano-Optics
ICFO-The Institute of Photonic Sciences
Point-of-care (POC) devices are compact, mobile and fast detection platforms expected to advance early diagnosis, treatment monitoring and personalized healthcare, and revolutionize today’s healthcare system, especially in remote areas. The need for POC devices strongly drives the development of novel biosensor technology. Building a small, fast, simple, and sensitive platform for biomolecule detection is a challenge that relies on the integration of multiple fields of expertise and engineering.
Optical nanoresonators have shown great promise as label-free biosensors because of direct light coupling and sub-wavelength sensing modes. Metallic nanoresonators with localized surface plasmon resonances (LSPR) are already well studied and were proven a solid alternative to the commercialized surface plasmon resonance (SPR) sensors. More recently, dielectric nanoresonators have also gained traction due to the reduced losses and the ability to manipulate both the electric and magnetic components of the incident light.
In this thesis, we advance the field of biosensing and use optical nanoresonators as operative platforms relevant for disease diagnosis and treatment monitoring. By combining different optimized optical nanoresonators, both metallic and dielectric, with state-of-the-art microfluidics and surface chemistry, we have developed and tested several detection platforms.
We first focused on developing a microfluidic lab-on-chip device for multiplexed biosensing utilizing the LSPR of gold nanoresonator arrays. By simultaneously tracking the extinction of 32 sensor arrays, we demonstrated multiplexed quantitative detection of four breast cancer markers in human serum. We showed that with well-optimized immunoassays, a low limit of detection (LOD) can be reached, paving the way towards clinically-relevant POC devices. Additionally, we implemented silicon nanoresonators supporting Mie resonances into functional and clinically-relevant applications. By integrating several arrays of Si nanoresonators with state-of-the-art microfluidics, we demonstrated their ability to detect cancer markers in human serum with high sensitivity and high specificity.
Furthermore, we showed that the fabrication of Si nanoresonator array using low cost and scalable projection lithography leads to sufficiently low limits of detection, while enabling cheaper and faster sensor production for future POC applications. We also investigated the respective role of electric and magnetic dipole resonances and showed that they are associated with two different transduction mechanisms: resonance redshift and extinction decrease.
Our work advances the development of future point-of-care sensing platforms for fast and low cost health monitoring at the molecular scale.
Tuesday, July 2, 11:00. ICFO Auditorium
Thesis Advisor: Prof Dr Romain Quidant
Thesis Co-Advisor: Dr Vanesa Sanz
ICFO-The Institute of Photonic Sciences
Point-of-care (POC) devices are compact, mobile and fast detection platforms expected to advance early diagnosis, treatment monitoring and personalized healthcare, and revolutionize today’s healthcare system, especially in remote areas. The need for POC devices strongly drives the development of novel biosensor technology. Building a small, fast, simple, and sensitive platform for biomolecule detection is a challenge that relies on the integration of multiple fields of expertise and engineering.
Optical nanoresonators have shown great promise as label-free biosensors because of direct light coupling and sub-wavelength sensing modes. Metallic nanoresonators with localized surface plasmon resonances (LSPR) are already well studied and were proven a solid alternative to the commercialized surface plasmon resonance (SPR) sensors. More recently, dielectric nanoresonators have also gained traction due to the reduced losses and the ability to manipulate both the electric and magnetic components of the incident light.
In this thesis, we advance the field of biosensing and use optical nanoresonators as operative platforms relevant for disease diagnosis and treatment monitoring. By combining different optimized optical nanoresonators, both metallic and dielectric, with state-of-the-art microfluidics and surface chemistry, we have developed and tested several detection platforms.
We first focused on developing a microfluidic lab-on-chip device for multiplexed biosensing utilizing the LSPR of gold nanoresonator arrays. By simultaneously tracking the extinction of 32 sensor arrays, we demonstrated multiplexed quantitative detection of four breast cancer markers in human serum. We showed that with well-optimized immunoassays, a low limit of detection (LOD) can be reached, paving the way towards clinically-relevant POC devices. Additionally, we implemented silicon nanoresonators supporting Mie resonances into functional and clinically-relevant applications. By integrating several arrays of Si nanoresonators with state-of-the-art microfluidics, we demonstrated their ability to detect cancer markers in human serum with high sensitivity and high specificity.
Furthermore, we showed that the fabrication of Si nanoresonator array using low cost and scalable projection lithography leads to sufficiently low limits of detection, while enabling cheaper and faster sensor production for future POC applications. We also investigated the respective role of electric and magnetic dipole resonances and showed that they are associated with two different transduction mechanisms: resonance redshift and extinction decrease.
Our work advances the development of future point-of-care sensing platforms for fast and low cost health monitoring at the molecular scale.
Tuesday, July 2, 11:00. ICFO Auditorium
Thesis Advisor: Prof Dr Romain Quidant
Thesis Co-Advisor: Dr Vanesa Sanz