


2019-01-18
ION HANCU
ION HANCU

2019-01-29
MARIA MAFFEI
MARIA MAFFEI

2019-02-13
BORIS BOURDONCLE
BORIS BOURDONCLE

2019-02-15
JORDI MORALES DALMAU
JORDI MORALES DALMAU

2019-02-22
FRANCESCO RICCI
FRANCESCO RICCI

2019-03-06
CLARA GREGORI
CLARA GREGORI

2019-03-26
ALEXIA SALAVRAKOS
ALEXIA SALAVRAKOS

2019-04-12
SENAIDA HERNANDEZ SANTANA
SENAIDA HERNANDEZ SANTANA

2019-04-15
DAVID RAVENTÓS RIBERA
DAVID RAVENTÓS RIBERA

2019-04-16
PETER SCHMIDT
PETER SCHMIDT

2019-04-29
CALLUM O’DONNELL
CALLUM O’DONNELL

2019-05-02
LUCIANA VIDAS
LUCIANA VIDAS

2019-05-03
HANYU YE
HANYU YE

2019-05-10
TANJA DRAGOJEVIC
TANJA DRAGOJEVIC

2019-05-17
FLAVIO BACCARI
FLAVIO BACCARI

2019-06-04
MARTINA GIOVANNELLA
MARTINA GIOVANNELLA

2019-07-02
OZLEM YAVAS
OZLEM YAVAS

2019-07-03
ALESSANDRO SERI
ALESSANDRO SERI

2019-07-11
RENWEN YU
RENWEN YU

2019-09-06
ALEXANDER BLOCK
ALEXANDER BLOCK

2019-10-04
MARCO PAGLIAZZI
MARCO PAGLIAZZI

2019-10-07
RINU MANIYARA
RINU MANIYARA

2019-10-15
ALEJANDRO POZAS-KERSTJENS
ALEJANDRO POZAS-KERSTJENS
Toward Next-Generation Nanophotonic Devices


Dr Renwen Yu
July 11th, 2019
RENWEN YU
Nanophotonics Theory
ICFO-The Institute of Photonic Sciences
In this thesis, we aim to explore several novel designs of nanostructures based on graphene to realize various functionalities. We briefly introduce the fundamental concepts and theoretical models used in this thesis in Chapter 1. Following the macroscopic analytical method outlined in the first chapter, in Chapter 2 we show that simple simulation methods allow us to accurately describe the optical response of plasmonic nanoparticles, including retardation effects, without the requirement of large computational resources.
We then move to our proposed first type of device: optical modulators. We explore graphene sheets coupled to different kinds of optical resonators to enhance the light intensity at the graphene plane, and so also its absorption, which can be switched on/off and modulated through varying the level of doping, as explored in Chapter 3. Unity-order changes in the transmission and absorption of incident light are predicted upon electrical doping of graphene.
Heat deposition via light absorption can severely degrade the performance and limit the lifetime of nano-devices (e.g., aforementioned optical modulators), which makes the manipulation of nanoscale heat sources/flows become crucial. In Chapter 4, we exploit the extraordinary optical and thermal properties of graphene to show that ultrafast radiative heat transfer can take place between neighboring nanostructures facilitated by graphene plasmons, where photothermally induced effects on graphene plasmons are taken into account. Our findings reveal a new regime for the nanoscale thermal management, in which non-contact heat transfer becomes a leading mechanism of heat dissipation.
Apart from the damage caused by heat deposition, generated thermal energy can be in fact used as a tool for photodetection (e.g., silicon bolometers for infrared photodetection). In Chapter 5, we show that the excitation of a single plasmon in a graphene nanojunction produces profound modifications in its electrical properties through optical heating, which we then use to demonstrate an efficient mid-infrared photodetector working at room temperature based on theoretical predictions that are corroborated in an experimental collaboration with the group of Prof. Fengnian Xia in Yale University.
Finally, in Chapter 6, we show through microscopic quantum-mechanical simulations, introduced in the first chapter, that both the linear and nonlinear optical responses of graphene nanostructures can be dramatically altered by the presence of a single neighboring molecule that carries either an elementary charge or a small permanent dipole. Based on these results, we claim that nanographenes can serve as an efficient platform for detecting charge- or dipole-carrying molecules.
Thursday, July 11, 12:00. ICFO Auditorium
Thesis Advisor: Prof Dr Francisco Javier García de Abajo
ICFO-The Institute of Photonic Sciences
In this thesis, we aim to explore several novel designs of nanostructures based on graphene to realize various functionalities. We briefly introduce the fundamental concepts and theoretical models used in this thesis in Chapter 1. Following the macroscopic analytical method outlined in the first chapter, in Chapter 2 we show that simple simulation methods allow us to accurately describe the optical response of plasmonic nanoparticles, including retardation effects, without the requirement of large computational resources.
We then move to our proposed first type of device: optical modulators. We explore graphene sheets coupled to different kinds of optical resonators to enhance the light intensity at the graphene plane, and so also its absorption, which can be switched on/off and modulated through varying the level of doping, as explored in Chapter 3. Unity-order changes in the transmission and absorption of incident light are predicted upon electrical doping of graphene.
Heat deposition via light absorption can severely degrade the performance and limit the lifetime of nano-devices (e.g., aforementioned optical modulators), which makes the manipulation of nanoscale heat sources/flows become crucial. In Chapter 4, we exploit the extraordinary optical and thermal properties of graphene to show that ultrafast radiative heat transfer can take place between neighboring nanostructures facilitated by graphene plasmons, where photothermally induced effects on graphene plasmons are taken into account. Our findings reveal a new regime for the nanoscale thermal management, in which non-contact heat transfer becomes a leading mechanism of heat dissipation.
Apart from the damage caused by heat deposition, generated thermal energy can be in fact used as a tool for photodetection (e.g., silicon bolometers for infrared photodetection). In Chapter 5, we show that the excitation of a single plasmon in a graphene nanojunction produces profound modifications in its electrical properties through optical heating, which we then use to demonstrate an efficient mid-infrared photodetector working at room temperature based on theoretical predictions that are corroborated in an experimental collaboration with the group of Prof. Fengnian Xia in Yale University.
Finally, in Chapter 6, we show through microscopic quantum-mechanical simulations, introduced in the first chapter, that both the linear and nonlinear optical responses of graphene nanostructures can be dramatically altered by the presence of a single neighboring molecule that carries either an elementary charge or a small permanent dipole. Based on these results, we claim that nanographenes can serve as an efficient platform for detecting charge- or dipole-carrying molecules.
Thursday, July 11, 12:00. ICFO Auditorium
Thesis Advisor: Prof Dr Francisco Javier García de Abajo