


2020-01-27
DANIEL SÁNCHEZ PEACHAM
DANIEL SÁNCHEZ PEACHAM

2020-01-31
CHRISTOS CHARALAMBOUS
CHRISTOS CHARALAMBOUS

2020-02-06
SERGIO LUCIO DE BONIS
SERGIO LUCIO DE BONIS

2020-02-10
JULIO SANZ SÁNCHEZ
JULIO SANZ SÁNCHEZ

2020-02-17
SANDRA DE VEGA
SANDRA DE VEGA

2020-02-21
ESTHER GELLINGS
ESTHER GELLINGS

2020-03-26
NICOLA DI PALO
NICOLA DI PALO

2020-03-30
ANGELO PIGA
ANGELO PIGA

2020-04-24
PABLO GOMEZ GARCIA
PABLO GOMEZ GARCIA

2020-06-04
ANUJA ARUN PADHEY
ANUJA ARUN PADHEY

2020-06-08
VIKAS REMESH
VIKAS REMESH

2020-06-23
DAVID ALCARAZ
DAVID ALCARAZ

2020-06-30
GERARD PLANES
GERARD PLANES

2020-07-09
IRENE ALDA
IRENE ALDA

2020-07-13
EMANUELE TIRRITO
EMANUELE TIRRITO

2020-07-16
ALBERT ALOY
ALBERT ALOY

2020-07-27
MARIA SANZ-PAZ
MARIA SANZ-PAZ

2020-07-28
JUAN MIGUEL PÉREZ ROSAS
JUAN MIGUEL PÉREZ ROSAS

2020-10-08
ZAHRA RAISSI
ZAHRA RAISSI

2020-10-30
IVAN BORDACCHINI
IVAN BORDACCHINI

2020-11-09
GORKA MUÑOZ GIL
GORKA MUÑOZ GIL

2020-11-17
ZAHRA KHANIAN
ZAHRA KHANIAN

2020-11-27
PAMINA WINKLER
PAMINA WINKLER
.jpg)
2020-12-02
BIPLOB NANDY
BIPLOB NANDY
.jpg)
2020-12-11
DANIEL GONZÁLEZ CUADRA
DANIEL GONZÁLEZ CUADRA
Quantum Brownian Motion in Bose-Einstein Condensates


Dr Christos Charalambous
January 31st, 2020
CHRISTOS CHARALAMBOUS
Quantum Optics Theory
ICFO-The Institute of Photonic Sciences
Quantum Brownian motion is one of the most prominent examples of an open quantum system, a system which cannot be treated in isolation from its environment. The simplest method to study the dynamics of a system undergoing such a type of motion, that satisfies Heisenberg Uncertainty principle is the approach of Quantum Generalized Langevin Equations (QGLE), which was used throughout this thesis. A Quantum Brownian motion approach is used in this work to study the Bose polaron problem. In this case, one transforms the original problem into one where the impurities are treated as quantum Brownian particles interacting with a bath composed of the Bogoliubov modes of the condensate. Then by deriving the relevant QGLE, it was shown that the dynamics of the Bose polaron exhibit memory effects. This was studied for both a free Bose-Einstein condensate (BEC) and a harmonically trapped one, in both cases for experimentally relevant parameters. Taking advantage of this recent theoretical development, we study a number of phenomena that can be examined under this prism and show how various microdevices can be constructed and controlled. In the first project, we study the creation of entanglement and squeezing of two uncoupled impurities that are immersed in a single common (BEC) bath. We treat these impurities as two quantum Brownian particles. We study two scenarios:(i) In the absence of an external potential, we observe sudden death of entanglement;(ii) In the presence of an external harmonic potential, where entanglement survives even at the asymptotic time limit. In our second work, we studied the diffusive behavior of a Bose Polaron immersed in a coherently coupled two-component BEC. The particle superdiffuses if it couples in the same manner to both components, i.e. if it couples either attractively or repulsively to both of them. This is the same behavior of an impurity immersed in a single BEC. Conversely, we find that it exhibits a transient nontrivial subdiffusive behavior if it couples attractively to one of the components and repulsively with the other. We show how the magnitude of the anomalous exponent reached and the duration of the subdiffusive interval can be controlled with the Rabi frequency of the coherent coupling between the two components and the coupling strength of the impurity to the BEC. Then we proceeded with the construction of two microdevices, a quantum sub-nk thermometer and a heat diode. In the first project, we introduced a novel minimally disturbing method for sub-nK thermometry in a BEC. In this case, the impurity acted as a thermometer, where one detects temperature fluctuations from measurements of the position and momentum of the impurity. Crucially, these cause minimal backaction on the BEC and hence, realize a nondemolition temperature measurement. Following the paradigm of the emerging field of quantum thermometry, we combine tools from quantum parameter estimation and the theory of open quantum systems to solve the problem in full generality. We thus avoid any simplification, such as demanding thermalization of the impurity atoms. In our final work, we investigated the heat transport and the control of heat current among two spatially separated trapped BECs, each of them at a different temperature. To allow for heat transport among the two independent BECs we consider a link made of two dipole-dipole interacting harmonically trapped impurities, each of them interacting with one of the BECs. We address the dependence of heat current and current-current correlations on the physical parameters of the system. Interestingly, we show that heat rectification, can occur in our system, when a periodic driving on the trapping frequencies of the impurities is considered. Therefore, our system is a possible setup for the implementation of a phononic circuit, and hence contributes in the general framework of using BECs as platforms for quantum information processing.
Friday, January 31, 2020, 15:00. ICFO’s Blue Lecture Room
Thesis Advisor: Prof Dr Maciej Lewenstein
Thesis Co-advisor: Dr Miguel A. Garcia-March
ICFO-The Institute of Photonic Sciences
Quantum Brownian motion is one of the most prominent examples of an open quantum system, a system which cannot be treated in isolation from its environment. The simplest method to study the dynamics of a system undergoing such a type of motion, that satisfies Heisenberg Uncertainty principle is the approach of Quantum Generalized Langevin Equations (QGLE), which was used throughout this thesis. A Quantum Brownian motion approach is used in this work to study the Bose polaron problem. In this case, one transforms the original problem into one where the impurities are treated as quantum Brownian particles interacting with a bath composed of the Bogoliubov modes of the condensate. Then by deriving the relevant QGLE, it was shown that the dynamics of the Bose polaron exhibit memory effects. This was studied for both a free Bose-Einstein condensate (BEC) and a harmonically trapped one, in both cases for experimentally relevant parameters. Taking advantage of this recent theoretical development, we study a number of phenomena that can be examined under this prism and show how various microdevices can be constructed and controlled. In the first project, we study the creation of entanglement and squeezing of two uncoupled impurities that are immersed in a single common (BEC) bath. We treat these impurities as two quantum Brownian particles. We study two scenarios:(i) In the absence of an external potential, we observe sudden death of entanglement;(ii) In the presence of an external harmonic potential, where entanglement survives even at the asymptotic time limit. In our second work, we studied the diffusive behavior of a Bose Polaron immersed in a coherently coupled two-component BEC. The particle superdiffuses if it couples in the same manner to both components, i.e. if it couples either attractively or repulsively to both of them. This is the same behavior of an impurity immersed in a single BEC. Conversely, we find that it exhibits a transient nontrivial subdiffusive behavior if it couples attractively to one of the components and repulsively with the other. We show how the magnitude of the anomalous exponent reached and the duration of the subdiffusive interval can be controlled with the Rabi frequency of the coherent coupling between the two components and the coupling strength of the impurity to the BEC. Then we proceeded with the construction of two microdevices, a quantum sub-nk thermometer and a heat diode. In the first project, we introduced a novel minimally disturbing method for sub-nK thermometry in a BEC. In this case, the impurity acted as a thermometer, where one detects temperature fluctuations from measurements of the position and momentum of the impurity. Crucially, these cause minimal backaction on the BEC and hence, realize a nondemolition temperature measurement. Following the paradigm of the emerging field of quantum thermometry, we combine tools from quantum parameter estimation and the theory of open quantum systems to solve the problem in full generality. We thus avoid any simplification, such as demanding thermalization of the impurity atoms. In our final work, we investigated the heat transport and the control of heat current among two spatially separated trapped BECs, each of them at a different temperature. To allow for heat transport among the two independent BECs we consider a link made of two dipole-dipole interacting harmonically trapped impurities, each of them interacting with one of the BECs. We address the dependence of heat current and current-current correlations on the physical parameters of the system. Interestingly, we show that heat rectification, can occur in our system, when a periodic driving on the trapping frequencies of the impurities is considered. Therefore, our system is a possible setup for the implementation of a phononic circuit, and hence contributes in the general framework of using BECs as platforms for quantum information processing.
Friday, January 31, 2020, 15:00. ICFO’s Blue Lecture Room
Thesis Advisor: Prof Dr Maciej Lewenstein
Thesis Co-advisor: Dr Miguel A. Garcia-March