Job openings & fellowships Job openings
Select Page
Light Seminars > Graphene
October 7, 2021
L4G SEMINAR: Quantum Light and Strongly Correlated Electronic States in a Moiré Heterostructure

Hour: From 12:00h to 13:00h

Place: Online (Zoom)

L4G SEMINAR: Quantum Light and Strongly Correlated Electronic States in a Moiré Heterostructure

BRIAN D. GERARDOT
Heriot-Watt University, Edinburgh (Scotland)

The unique physical properties of two-dimensional materials, combined with the ability to stack unlimited combinations of atomic layers with arbitrary crystal angle, has unlocked a new paradigm in designer quantum materials. For example, when two different monolayers are brought into contact to form a heterobilayer, the electronic interaction between the two layers results in a spatially periodic potential-energy landscape: the moiré superlattice. The moiré superlattice can create flat bands and quench the kinetic energy of electrons, giving rise to strongly correlated electron systems. Further, single particle wave packets can be trapped in the moiré potential pockets with three-fold symmetry to form ‘quantum dots’ which can emit single photons. Here I will present magneto-optical spectroscopy of MoSe2/WSe2 heterobilayer devices with a small relative twist. I will discuss moiré-trapped inter-layer excitons, which can emit quantum light, and intra-layer excitons, with which we observe a large number of strongly correlated electron and hole states as a function of fractional filling.

 

Bio:
Professor Brian Gerardot holds a Chair in Emerging Technology from the Royal Academy of Engineering and leads the Quantum Photonics Lab at Heriot-Watt University in Edinburgh, Scotland (more information: http://qpl.eps.hw.ac.uk/).

His research, at the interface of quantum optics, condensed-matter physics, and materials science, aims to engineer and controllably manipulate quantum states in semiconductor devices, in particular with III-V quantum dots and van der Waals heterostructure devices. Brian obtained a BS from Purdue University and a PhD from UC Santa Barbara.


All interested may join this session. Participants will be asked to register upon entry. After registering, you will receive a confirmation email containing information to save the date and joining the meeting.

This activity is co-funded by the European Regional Development Funds (ERDF) allocated to the Programa operatiu FEDER de Catalunya 2014-2020, with the support of the Secretaria d’Universitats i Recerca of the Departament d’Empresa i Coneixement of the Generalitat de Catalunya for emerging technology clusters devoted to the valorization and transfer of research results (GraphCAT 001-P-001702).

Hosted by Frank Koppens
Light Seminars > Graphene
October 7, 2021
L4G SEMINAR: Quantum Light and Strongly Correlated Electronic States in a Moiré Heterostructure

Hour: From 12:00h to 13:00h

Place: Online (Zoom)

L4G SEMINAR: Quantum Light and Strongly Correlated Electronic States in a Moiré Heterostructure

BRIAN D. GERARDOT
Heriot-Watt University, Edinburgh (Scotland)

The unique physical properties of two-dimensional materials, combined with the ability to stack unlimited combinations of atomic layers with arbitrary crystal angle, has unlocked a new paradigm in designer quantum materials. For example, when two different monolayers are brought into contact to form a heterobilayer, the electronic interaction between the two layers results in a spatially periodic potential-energy landscape: the moiré superlattice. The moiré superlattice can create flat bands and quench the kinetic energy of electrons, giving rise to strongly correlated electron systems. Further, single particle wave packets can be trapped in the moiré potential pockets with three-fold symmetry to form ‘quantum dots’ which can emit single photons. Here I will present magneto-optical spectroscopy of MoSe2/WSe2 heterobilayer devices with a small relative twist. I will discuss moiré-trapped inter-layer excitons, which can emit quantum light, and intra-layer excitons, with which we observe a large number of strongly correlated electron and hole states as a function of fractional filling.

 

Bio:
Professor Brian Gerardot holds a Chair in Emerging Technology from the Royal Academy of Engineering and leads the Quantum Photonics Lab at Heriot-Watt University in Edinburgh, Scotland (more information: http://qpl.eps.hw.ac.uk/).

His research, at the interface of quantum optics, condensed-matter physics, and materials science, aims to engineer and controllably manipulate quantum states in semiconductor devices, in particular with III-V quantum dots and van der Waals heterostructure devices. Brian obtained a BS from Purdue University and a PhD from UC Santa Barbara.


All interested may join this session. Participants will be asked to register upon entry. After registering, you will receive a confirmation email containing information to save the date and joining the meeting.

This activity is co-funded by the European Regional Development Funds (ERDF) allocated to the Programa operatiu FEDER de Catalunya 2014-2020, with the support of the Secretaria d’Universitats i Recerca of the Departament d’Empresa i Coneixement of the Generalitat de Catalunya for emerging technology clusters devoted to the valorization and transfer of research results (GraphCAT 001-P-001702).

Hosted by Frank Koppens

All Insight Seminars