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We determine the complete set of generalized spin squeezing inequalities. These are entanglement
criteria that can be used for the experimental detection of entanglement in a system of spin- 1

2 particles in
which the spins cannot be individually addressed. They can also be used to show the presence of bound
entanglement in the thermal states of several spin models.
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Entanglement lies at the heart of many problems in
quantum mechanics and has attracted increasing attention
in recent years. However, in spite of intensive research,
many of its intriguing properties are not fully understood.
For example, it has been shown that there are entangled
states from which the entanglement cannot be distilled
again into the pure state form, even if many copies of the
state are available [1]. The existence of these so-called
bound entangled states has wide-ranging consequences
for quantum cryptography [2] and classical information
theory [3]. Since entangled states that are not recognized
by the separability criterion of the positivity of the partial
transpose (PPT) [4] are bound entangled, such states also
serve as a test bed for new separability criteria [5–7].
However, bound entangled states are often considered to
be rare, in the sense that they do not occur under natural
conditions.

In physical systems such as ensembles of cold atoms [8]
or trapped ions [9], spin squeezing [10,11] is one of the
most successful approaches for creating large scale quan-
tum entanglement. Since the variance of a spin component
is small, spin squeezed states can be used for reducing
spectroscopic noise or to improve the accuracy of atomic
clocks [10,11]. Moreover, if an N-qubit state violates the
inequality [12]

 

��Jx�
2

hJyi
2 � hJzi

2 �
1

N
; (1)

where Jl :� 1
2

PN
k�1 �

�k�
l for l � x, y, z are the collective

angular momentum components, and ��k�l are Pauli matri-
ces, then the state is entangled (i.e., not separable), which is
necessary for using it in quantum information processing
applications [12].

Recently, several generalized spin squeezing criteria for
the detection of entanglement appeared in the literature
[13–15] and have been used experimentally [16]. These
criteria have a large practical importance since in many
quantum control experiments, the spins cannot be individu-
ally addressed, and only collective quantities can be mea-

sured. In Ref. [13], a generalized spin squeezing criterion
was presented detecting the presence of two-qubit entan-
glement. In Refs. [14,15], other criteria can be found that
detect entanglement close to spin singlets and symmetric
Dicke states, respectively. These entanglement conditions
were obtained using very different approaches. At this
point, two main questions arise: (i) Is there a systematic
way of finding all such inequalities? Clearly, finding such
optimal entanglement conditions is a hard task since one
can expect that they contain complicated nonlinearities.
(ii) How strong are spin squeezing criteria? Can they detect
entangled states that are not detected by the PPT criterion
or other known entanglement criteria?

The goal of this Letter is twofold. First, we give a
complete set of spin squeezing inequalities based on the
first and second moments of collective observables.
Second, we use them to show the presence of multipartite
bound entanglement in several spin models in thermal
equilibrium. In particular, we consider bound entangle-
ment that has a positive partial transpose with respect to
all bipartitions.

We can directly formulate our first main result:
Observation 1.—Let us assume that for a physical sys-

tem, the values of ~J :� �hJxi; hJyi; hJzi� and ~K :�
�hJ2

xi; hJ2
yi; hJ2

z i� are known. Violation of any of the follow-
ing inequalities implies entanglement:
 

hJ2
xi � hJ2

yi � hJ2
z i � N�N � 2�=4; (2a)

��Jx�2 � ��Jy�2 � ��Jz�2 � N=2; (2b)

hJ2
i i � hJ

2
j i � N=2 � �N � 1���Jk�

2; (2c)

�N � 1����Ji�2 � ��Jj�2	 � hJ2
ki � N�N � 2�=4; (2d)

where i, j, k take all the possible permutations of x, y, z.
The proof is given in the Appendix.

For any value of ~J, these eight inequalities define a
polytope in the three-dimensional �hJ2

xi; hJ
2
yi; hJ

2
z i�-space.

Observation 1 states that separable states lie inside this
polytope. For the case ~J � 0 and N � 6, the polytope is
depicted in Fig. 1. Such a polytope is completely charac-
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terized by its extreme points. Direct calculation shows that
they are
 

Ax :�
�
N2

4
� ��hJyi2 � hJzi2�;

N
4
� �hJyi2;

N
4
� �hJzi2

�
;

Bx :�
�
hJxi2 �

hJyi2 � hJzi2

N
;
N
4
� �hJyi2;

N
4
� �hJzi2

�
;

where � :� �N � 1�=N. The points Ay=z and By=z can be
obtained in an analogous way.

One might ask whether all points inside the polytope
correspond to separable states. This would imply that the
criteria of Observation 1 are complete, that is, if the
inequalities are satisfied, then the first and second moments
of Jk do not suffice to prove entanglement. In other words,
it is not possible to find criteria detecting more entangled
states based on these moments. Because of the convexity of
the set of separable states, it is enough to investigate the
extreme points:

Observation 2.—For any value of ~J, there are separable
states corresponding to Ak. For certain values of ~J and N,
there are separable states corresponding to points Bk.
However, there are always separable states corresponding
to points B0k such that their distance from Bk is smaller than
1=4. In the limit N ! 1 for a fixed normalized angular
momentum ~j :� ~J=�N=2�, the difference between the vol-
ume of polytope of Eqs. (2) and the volume of set of points
corresponding to separable states decreases with N at least
as �V=V / N�2; hence, in the macroscopic limit, the
characterization is complete.

Proof.—A separable state corresponding to Ax is

 �Ax :� p�j �ih �j�
N � �1� p��j �ih �j�
N: (3)

Here, j �=�i are the single qubit states with Bloch vector
coordinates �h�xi; h�yi; h�zi� � ��cx; hJyi=J; hJzi=J�

where J :� N=2 and cx :�
����������������������������������������������
1� �hJyi

2 � hJzi
2�=J2

q
. The

mixing ratio is defined as p :� �1� hJxi=�Jcx�	=2. If
M :� Np is an integer, we can also define the state corre-
sponding to the point Bx as

 j�Bxi :� j �i
M 
 j �i
�N�M�: (4)

If M is not an integer, we can approximate Bx by tak-
ing m :� M� " as the largest integer smaller than M, de-
fining �0 :� �1� "��j �ih �j�


m 
 �j �ih �j�

�N�m� �

"�j �ih �j�
�m�1� 
 �j �ih �j�
�N�m�1�. This state has
the same coordinates as Bx, except for the value of hJ2

xi,
where the difference is c2

x�"� "2� � 1=4. The dependence
of �V=V on N can be studied by considering the polytopes
in the �hJ2

xi; hJ
2
yi; hJ

2
z i� space corresponding to hJki � jk �

N=2, where jk are the normalized angular momentum
coordinates. As N increases, the distance of the points Ak
to Bk scales as N2; hence, the volume of the polytope
increases as N6. The difference between the polytope and
the points corresponding to separable states scales like the
surface of the polytope, hence as N4. �

Now we consider already known entanglement criteria
and show how they can be derived from our theory. This
can be done by showing that for any ~J, the points Ak and Bk
satisfy them.

Case 1.—The standard spin squeezing inequality is
Eq. (1) from Ref. [12]. This inequality is valid for all Ak
and Bk, for Bx even equality holds.

Case 2.—For separable states, hJ2
xi � hJ2

yi � �N2 � N�=
4 holds [15], as can be proved in the same way. This can be
used to detect entanglement close to the N-qubit symmet-
ric Dicke states with N=2 excitations.

Case 3.—Separable states fulfill Eq. (2b) which has
already been shown in Ref. [14]. It is maximally violated
by a many-body singlet, e.g., the ground state of an anti-
ferromagnetic Heisenberg chain.

Case 4.—For symmetric states, it is known that hJ2
xi �

hJ2
yi � hJ

2
z i � N�N � 2�=4 [13]. From this and Eq. (2c),

one can directly derive 1� 4hJii
2=N2 � 4��Ji�

2=N from
Ref. [13].

Next, it is interesting to ask what kind of entanglement is
detected by our criteria knowing that they contain only
two-body correlation terms of the from h��i�k �

�j�
k i and do

not depend on higher order correlations. In fact, all quan-
tities in our inequalities can be evaluated based on knowing
the average two-qubit density matrix �av2 :� 1

N�N�1� �P
i�j�ij. Do our criteria simply detect entanglement of

the two-qubit reduced state of the density matrix? We
will now show that the criteria Eqs. (2) can detect en-
tangled states that have a separable two-qubit density
matrix. Even more surprisingly, they can detect bound
entanglement in spin systems. While in the following we
will use Eqs. (2) for the theoretical analysis of spin models,
we stress that Eqs. (2) can also be used for the experimental
detection of entanglement in a realization of these models
in physical systems in which the collective angular mo-
mentum can be measured (e.g., Ref. [16]).
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FIG. 1 (color online). The polytope of separable states corre-
sponding to Eqs. (2) for N � 6 and ~J � 0. S corresponds to a
many-body singlet state.
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Let us first consider four spin-1=2 particles, interacting
via the Heisenberg-type Hamiltonian [17]

 H �
X4

k�1

~�k ~�k�1 � J2� ~�1 ~�3 � ~�2 ~�4�; (5)

where ~� � ��x; �y; �z�. For the above Hamiltonian, we
compute the thermal state %�T; J2� / exp��H=kT� and
investigate its separability properties. Hamiltonians of the
type Eq. (5) are by no means artificial: They are used to
describe cuprate and polyoxovanadate clusters [17,18]. For
several separability criteria, we calculate the maximal
temperature, below which the criteria find the states en-
tangled. The results are summarized in Fig. 2. For J2 *

�0:5, the spin squeezing inequality Eq. (2b) is the stron-
gest criterion for separability. It allows us to prove the
presence of entanglement even if the state is PPT with
respect to all bipartitions [4]. This implies that the state
is multipartite bound entangled: No pure entangled state
can be distilled from it [19]. Note that introducing the next-
to-nearest neighbor coupling made the PPT entangled tem-
perature range larger.

For comparison, we investigated the computable cross
norm or realignment criteria (CCNR, [5]) corresponding to
all bipartitions, all the other criteria based on permutations
[20], and the criterion based on covariance matrices [7].
None of them is able to find PPT entanglement in our spin
system. Finally, we studied for each bipartition the sepa-
rability test of symmetric extensions [21] that is strictly
stronger than the PPT criterion. The critical temperatures,
however, coincide within numerical accuracy with the ones
from the PPT criterion, giving strong evidence that % is
indeed separable for the bipartitions. Indeed, we will see
later that in some spin models, the spin squeezing inequal-
ities signal the presence of entanglement even for states
that are separable with respect to all bipartitions.

After small spin clusters, we consider larger spin sys-
tems. Using Eqs. (2), we find bound entanglement that is
PPT with respect to all bipartitions in Heisenberg and XY
chains with a periodic boundary condition with up to 9
qubits. The critical temperatures are shown in Table I.
Equations (2) also detect bound entanglement in
Heisenberg and XY models with a complete graph topol-
ogy [22]. Latter is a special case of the Lipkin-Meshkov-
Glick model [23]. In all these cases, there is a considerable
temperature range for which the thermal state is PPT with
respect to all partitions but not yet separable [24].
Interestingly, since in the three-qubit Heisenberg model
the thermal state is invariant under multilateral unitary
transformations of the type U 
U 
U, for such states
the PPT condition implies biseparability [25]. Thus, the
spin squeezing inequalities can detect bound entanglement
for which all bipartitions are separable.

Note that the bound entanglement that is PPT with
respect to all bipartitions is perhaps the most intriguing
type and the most challenging to detect. No pure state
entanglement can be distilled from it with local operations
and classical communication, even if an arbitrary number
of parties join. However, an entangled state that is PPTwith
respect to only a single partition is already bound entangled
since no GHZ state can be distilled from it [19]. Such
entanglement can be found by the PPT criterion with
respect to a different partition. It is expected to appear in
many systems since as the temperature increases, not all
the bipartitions become PPT at the same temperature [26].

Our study of the spin models has two general conse-
quences. First, we realize that examination of spin models
via the partial transposition or the investigation of biparti-
tions does not lead to a full understanding of the entangle-
ment properties of condensed matter systems. Second, we
note that the spin clusters and spin chains we studied are
models of existing physical systems. Thus, multipartite
bound entanglement that is PPT with respect to all parti-
tions is not a rare phenomenon in nature.

Moreover, based on Ref. [27], it is possible to connect
the variances of collective angular momenta to important
thermodynamical quantities giving our inequalities a new
physical interpretation. Let us consider a system with a
Hamiltonian H and an additional magnetic interaction
HI :�

P
k�x;y;zBkJk, where ~B is the magnetic field.

Moreover, assume that H commutes with Jx=y=z. Then the
magnetic susceptibilities are �l :� �@hJli=@Bl�j ~B�0 for
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FIG. 2 (color online). Entanglement properties of the spin
model with the Hamiltonian Eq. (5). The critical temperatures
for several entanglement conditions are shown as a function of
the next-to-nearest neighbor coupling J2. For details see text.

TABLE I. Critical temperatures for the PPT criterion and
Eqs. (2) for Heisenberg and XY spin chains of various size.

N 3 4 5 6 7 8 9

Heisenberg Equations (2) 5.46 5.77 5.72 5.73 5.73 5.73 5.73
model PPT 4.33 5.47 4.96 5.40 5.17 5.37 5.25
XY Equations (2) 3.08 3.48 3.39 3.41 3.41 3.41 3.41
model PPT 2.56 3.46 3.08 3.34 3.19 3.32 3.24
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l � x, y, z and the variances can be written as ��Jl�2 �
kT�l. Thus, our inequalities can be expressed with suscep-
tibilities [28].

Finally, we discuss some further features of our spin
squeezing inequalities. One can ask what happens, if not
only hJki and hJ2

ki for k � x, y, z are known, but hJii and
hJ2
i i in arbitrary directions i. We will now show how to find

the optimal directions x0, y0, z0 to evaluate Observation 1.
Knowledge of hJii and hJ2

i i in arbitrary directions is
equivalent to the knowledge of the vector ~J, the correlation
matrix C, and the covariance matrix �, defined as [7,29]
Ckl :� hJkJl � JlJki=2 and �kl :� Ckl � hJkihJli for k, l �
x, y, z. When changing the coordinate system to x0, y0, z0,
vector ~J and the matrices C and � transform as ~J � O ~J,
C � OCOT , and � � O�OT where O is an orthogonal
3� 3-matrix. Looking at the inequalities of Observation 1,
one finds that the first two inequalities are invariant under
a change of the coordinate system. Concerning Eq. (2c),
we can reformulate it as hJ2

i i � hJ
2
j i � hJ

2
ki � N=2 �

�N � 1���Jk�
2 � hJ2

ki. Then, the left hand side is again
invariant under rotations, and we find a violation of
Eq. (2c) in some direction if the minimal eigenvalue of
X :� �N � 1��� C is smaller than Tr�C� � N=2.
Similarly, we find a violation of Eq. (2d) if the largest
eigenvalue of X exceeds �N � 1�Tr��� � N�N � 2�=4.
Thus, the orthogonal transformation that diagonalizes X
delivers the optimal measurement directions x0, y0, z0 [30].

In summary, we presented a family of entanglement
criteria that detect any entangled state that can be detected
based on the first and second moments of collective angu-
lar momenta. We applied our findings to examples of spin
models, showing the presence of bound entanglement in
these models.

Appendix—Proof of Observation 1.—Fully separable
states are of the form � �

P
lpl�

�1�
l 
 �

�2�
l 
 . . . 
 ��N�l ,

where
P
lpl � 1 and pl > 0. The variance, defined as

��A�2 :� hA2i � hAi2, is concave in the state; thus, it suf-
fices to prove that the inequalities of Observation 1 are
satisfied by pure product states. Based on the theory of
angular momentum, Eq. (2a) is valid for all quantum states.
For Eq. (2b), one first needs that for product states
��Jk�2 � N=4� �1=4�

P
ih�
�i�
k i

2 holds, then the statement
follows form the normalization of the Bloch vector. Con-
cerning Eq. (2c), we have to show that Y :� �N � 1��
��Jx�

2 � N=2� hJ2
yi � hJ

2
z i � 0. Using the abbreviation

xi � h�
�i�
x i, yi � h�

�i�
y i, etc., this can be written as Y �

�N � 1��N=4 � �1=4�
P
ix

2
i 	 � �1=4�

P
i�j�yiyj � zizj� �

�N � 1��N=4� �1=4�
P
ix

2
i 	 � �1=4���

P
iyi�

2 � �
P
izi�

2	 �
�1=4�

P
i�y

2
i � z

2
i �. Using the fact that �

P
isi�

2 � N
P
is

2
i ,

and the normalization of the Bloch vector, it follows that
Y � 0. Equation (2d) can be proven in the same way. �
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