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Observation of two-dimensional
superlattice solitons
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We observe experimentally two-dimensional solitons in superlattices comprising alternating deep and shal-
low waveguides fabricated via the femtosecond-laser direct writing technique. We find that the symmetry of
linear diffraction patterns as well as soliton shapes and threshold powers largely differ for excitations cen-
tered on deep and shallow sites. Thus, bulk and surface solitons centered on deep waveguides require much
lower powers than their counterparts on shallow sites. © 2009 Optical Society of America

OCIS codes: 190.0190, 190.6135.
Since the prediction of discrete solitons in waveguide
arrays [1] and their experimental demonstration
[2,3] such states were investigated in a number of
settings [4–7]. Particular attention has been paid to
the precise tuning of soliton properties. Periodic sys-
tems with complicated transverse shapes such as
photonic superlattices (SLs) open new opportunities
for soliton control [8]. Owing to their binary unit cell,
such structures provide the possibility to engineer a
minigap within the first propagation band [9]. A va-
riety of linear [10–14] and nonlinear phenomena, in-
cluding formation of gap solitons [9,15], solitons in
Bragg gratings [16], and defect gap solitons [17],
were demonstrated in SLs. However, experimental
investigations of SL solitons were limited to one-
dimensional (1D) settings [18,19] so that the features
of two-dimensional (2D) entities remain unseen to
date. In this Letter, we report the experimental ob-
servation of solitons in 2D binary SLs. We show how
soliton formation is affected by the choice of the ex-
cited sublattice as well as by the presence of surfaces.

To gain insight into the dynamics of soliton forma-
tion, we describe the propagation of light with the
nonlinear Schrödinger equation for the dimension-
less field amplitude q assuming cw illumination,
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Here � ,� and � are the transverse and the longitudi-
nal coordinates normalized to the characteristic
transverse scale and diffraction length, respectively.
The refractive index profile is given by
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where p1 and p2 represent the depths of centered and
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shifted sublattices, respectively. The separation be-
tween sites in each sublattice is designated as d,
whereas G��k ,�k�=exp�−��−�k�2 /w�

2 − ��−�k�2 /w�
2� de-

scribes the elliptical shape of the individual
waveguides with widths �w� ,w��. Among the con-
served quantities of Eq. (1) is the total energy flow
U=		−�

� �q�2d�d�.
In accordance with the experiments we set N=3

(i.e., lattices with 85 waveguides), d=6.4 (correspond-
ing to a separation of 64 �m between the waveguides
in each sublattice), and w�=1.1, w�=0.3 (correspond-
ing to individual waveguides with dimensions of
11 �m�3 �m�. In the following, the case p1�p2 is
referred to as the D lattice because the central as
well as all corner and edge sites belong to the
“deeper” sublattice, i.e., the lattice with a higher re-
fractive index. Analogously, the case p1�p2 is termed
the S lattice, with the above mentioned sites then be-
longing to the “shallower” sublattice. Further we set
p1=3.00, p2=2.86 for the D lattice and p1=2.86, p2
=3.00 for the S lattice. The value p1,2=3 is equivalent
to the actual refractive index modulation depth of
	n
3.3�10−4.

We search for stationary solutions of Eq. (1) resid-
ing in the center, on the edge, or in the corner of the
form q=w�� ,��exp�ib��, where b is the propagation
constant, and w�� ,�� is a real function describing
transverse soliton shape. The dependence U�b� for
such solutions is nonmonotonic in both S and D lat-
tices. The branches where dU /db
0 are unstable,
whereas dU /db�0 corresponds to stable solitons. 2D
SL solitons exist above a cutoff propagation constant
bco and for powers above the threshold power Uth. In
contrast to the findings in truncated 1D SLs [19],
solitons in 2D D lattices require considerably lower
threshold powers for their existence [Fig. 1(a)]. Thus,
for the parameters stated above the soliton residing
in the central site of the D lattice has a threshold of
Uth�0.550, whereas its S lattice counterpart exists

only above Uth�0.929. This difference is remarkable,
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taking into account the small detuning between sub-
lattices of only �p2−p1� /p2
5%. The difference in
threshold powers grows rapidly with an increase of
�p2−p1�. In both lattice types corner solitons feature
the lowest, and center solitons feature the highest
threshold [Fig. 1(b)]. Notice that owing to the finite
number of waveguides in the lattice, bco is slightly
lower in D lattices.

Representative profiles of 2D SL solitons are
shown in Fig. 2. They expand across the lattice and
undergo pronounced shape oscillations as b→bco.
However, solitons in the D lattice expand dramati-
cally at bco, covering almost the entire lattice [Figs.
2(a)–2(c)], while their S lattice counterparts extend
over only a few neighboring sites when b→bco [Figs.
2(d)–2(f)]. This difference in soliton shapes becomes
more pronounced with growing detuning �p2−p1� be-
tween sublattices. Yet, in both S and D lattices an in-
crease in the propagation constant eventually results

Fig. 1. U versus b for solitons residing in the (a) central
sites of D and S lattices and (b) central �M�, edge �E�, and
corner �C� sites of the S lattice. Black, white, and gray
circles in (a) correspond to Figs. 2(g), 2(d), and 2(a), while
in (b) they correspond to Figs. 2(d)–2(f).

Fig. 2. (Color online) Soliton profiles in the D lattice at (a)
b=0.314, (b) b=0.315, and (c) b=0.311. Soliton profiles in
the S lattice at (d) b=0.327; (e) b=0.325; (f) b=0.322; and

(g),(h),(k) b=0.491.
in the contraction of solitons into the initially excited
lattice site as shown for the S lattice in Figs. 2(g),
2(h), and 2(k).

Our experiments were conducted in SLs with the
above discussed parameters fabricated via
femtosecond-laser direct writing [20] in a fused silica
sample with a length of 105 mm. Specific fabrication
parameters are discussed in [21]. The waveguides
were excited with a Ti:sapphire laser system deliver-
ing 200 fs pulses at a wavelength of 800 nm with a
repetition rate of 1 kHz. The resulting patterns at the
output facet were imaged onto a CCD camera.

Figures 3 and 4 show the output intensity distribu-
tions at specific powers for excitations of the central,
edge, and corner sites of the D and S lattices, respec-
tively. For comparison, the first rows of both figures
show the simulated patterns in the linear regime
(vanishing excitation power), while the respective ex-
perimental linear patterns (peak power of 200 kW)
are depicted in the second row. In the third and
fourth rows different stages of localization for peak
powers of 1 and 2 MW are shown.

Notice that, while near-threshold stationary solu-
tions generally feature a lower degree of localization
in the D lattice, experimental observations suggest
that upon dynamical excitation in the nonlinear re-

Fig. 3. (Color online) Output patterns for (a) central, (b)
edge, and (c) corner excitations in the D lattice. First row,
simulated linear patterns. Second row, observed linear pat-
tern at input peak power of 200 kW. Third and fourth rows,
observed nonlinear patterns at input peak powers of 1 and
2 MW, respectively.
gime the light spreads more widely in the S lattice at
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comparable power levels. Figures 3 and 4 illustrate
that the experimental localization in D lattices is
achieved at substantially lower input peak powers
than in S lattices. While in D lattices an increasing
input power results in the monotonic contraction of
the measured output pattern, an intermediate
spreading can be observed in S lattices. This surpris-
ing effect occurs when the nonlinear contributions to
the effective index of the excited site compensate the
detuning between the sublattices, thus leading to a
greatly enhanced coupling to the neighboring guides.
A similar behavior was observed for the excitation of
surface solitons on negative defects [22]. Since all ex-
periments were conducted with pulsed light, the non-
linear index matching may still occur on the pulse
slopes, even for peak powers well above the threshold
[23]. This results in a more pronounced background
and considerably lowers the soliton excitation effi-
ciency in S lattices.

In conclusion, we observed experimentally the for-
mation of solitons residing in the center, edge, and
corner sites of binary SLs for both S- and D-type con-
figurations. We showed numerically that even a
small refractive index offset between the sublattices
has a strong influence on the respective power
thresholds. Furthermore, both linear diffraction pat-
terns and soliton profiles may differ substantially de-
pending the excited sublattice.
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Fig. 4. (Color online) Output patterns for the S lattice. Ar-
rangement corresponds to Fig. 3.
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